Apple’s Digital Twin is All About Augmented Reality

Now before we get too far, Apple has not created anything close to a Digital Twin as we know them. But what they have done is created an easy way to import your building models into Apple Maps. Apple calls this their Indoor Maps program.

Easily create detailed maps of your indoor spaces and let visitors see where they are right in your app. Organizations with large public and private spaces like airports, shopping centers, arenas, hospitals, universities, and private office buildings can register for the Indoor Maps Program. Indoor maps are built using industry standard tools and require only your existing Wi-Fi network to enable GPS-level location accuracy so visitors can navigate your spaces with ease.

Victoria Airport in the Apple IMDF Sandbox

OK, so clearly this is all about navigation. How do I know where I am in a building and how do I get to a place I need to be. Of course, this is somewhat interesting on your iPhone or iPad in Apple Maps, but clearly, there is more to this than just how do I find the restroom on floor 10 of the bank tower.

To load your buildings in Apple you need to use Mapkit or Mapkit.js and convert your buildings into Indoor Mapping Data Format (IMDF). IMDF is actually a great choice because it is GeoJSON and working toward being an OGC standard (for whatever that is worth these days). I did find it interesting that Apple highlights the following as the use case for IMDF:

  • Indoor wayfinding
  • Indoor routing
  • Temporal constraints
  • Connectivity amongst mapped objects
  • Location-based services
  • Query and find by location functionality

If you’re familiar with GeoJSON, IMDF will look logical to you:

  "id": "11111111-1111-1111-1111-111111111111",
  "type": "Feature",
  "feature_type": "building",
  "geometry": null,
  "properties": {
    "category": "parking",
    "restriction": "employeesonly",
    "name": {
      "en": "Parking Garage 1"
    "alt_name": null,
    "display_point": {
      "type": "Point",
      "coordinates": [1.0, 2.0]
    "address_id": "2222222-2222-2222-2222-222222222222"

I encourage you to review the IMDF docs to learn more but we’re talking JSON here so it’s exactly how you’d expect it to work.

Because IMDF buildings are generalized representations of the real-world data, this isn’t actually a Digital Twin. It also means that you need to do some things to your files before converting them to IMDF. Autodesk, Esri, and Safe Software all support IMDF so you should be able to use their tools to handle the conversions. I’ve done the conversion with Safe FME and it works very well and probably the best way to handle this. In fact, Safe has an IMDF validator which does come in handy for sure.

Safe FME support of IMDF

What does make moving your buildings to Apple’s Indoor platform is the new iPhone 12 and iPad Pro LiDAR support. This brings out some really great AR capabilities that become enabled with Apple’s devices. As I said last week, the LiDAR support in the current devices is more about getting experience with LiDAR use cases than actual LiDAR use. This is all about eventual Apple Glass (and Google Glass too) support and the AR navigation that can be done when you have hyper-accurate indoor models in your mapping software.

I’ve been dusting off my MapKit skills because I think not only is this capability useful for many companies but it really isn’t that hard to enable. I am spending some time thinking about how to use the extension capability of IMDF to see how IoT and other services can be brought in. Given the generalized nature of IMDF, it could be a great way to allow visualizing IoT and other services without the features of a building getting in the way. Stay tuned!


Developing a Method to Discover Assets Inside Digital Twins

On Monday I had a bit of a tweetstorm to get some thoughts on paper.

In there I laid out what I thought addressing inside a building should look like. A couple of responses came to the “why” or “this isn’t an issue” but the important thing here is with smart buildings, they need to be able to route people not only to offices for “business” but workers to IoT devices to act upon issues that might occur (like a water valve leaking in a utility closet). Sure one, could just pull out an as-built drawing and navigate, or in the case of visiting a company, the guard at the front door, but if things such as Apple Glass and Google Glass start becoming a real thing, we’ll need a true addressing system to get people where they need to be.

Apple and Google are working this out themselves inside their ecosystems but there needs to be an open standard that people can use inside their applications to share data. I mentioned Placekey as a good starting point with their what@where.

The what is an address – poi encoding and the where is based on Uber’s H3 system. As great as all this is, it doesn’t help us figure out where the leaky valve is in the utility closet. This all is much better than other systems and is a great way to get close. I’ve not seen any way to create extensions to Placekey to do this but we’ll punt the linking problem for now.

The other problem with addressing inside a building is the digital twin might not be in any projection that our maps understand. So we’ll need to create a custom grid to figure out where the IoT and other interesting features are located. But there seems to be a standard being created that solves just this problem, UBID.

UBID builds on the open-source grid reference system and is essentially the north axis-aligned “bounding box” of the building’s footprint represented as a centroid along with four cardinal extents.

I really like this, it might even compete with Placekey, but that’s not my battle, I’m more concerned with buildings in this use case. There is so much to UBID to digest and I encourage you to read the Github to learn more.

But if we can link these grids of buildings, with a Placekey, we have a superb method of navigating to a building POI and then drilling down into navigating to that location using all the great work that companies like Pixel8 are doing. But all that navigation stuff is not my battle, just a location of an IoT sensor in a digital twin that may or may not be in a project we can use.

Working toward that link, a unique grid of a digital twin to a Placekey would solve all problems with figuring out where an asset inside a building is and what is going on at that location. The ontologies to link this could open up whole new methods of interrogation of IoT devices and so much more. e911 and similar systems could greatly benefit from this as well.